Regenerative Innovation Process Through Systems Thinking [Infographic]

Regenerative Innovation Process Through Systems Thinking [Infographic]

About a month ago, Kasper Benjamin Reimer Bjørkskov, posted a message on LinkedIn that contained an impressive methodology to look at regenerative systems thinking. The idea sparked my mind and I gave it a lot of thinking during the last few weeks. And, although I explicitly do acknolwedge the strength and simplicity of the model that was proposed, I believe from a theoretical perspective, it could be improved a bit. Let me first paraphrase the initial post and infographic:

🌍 Regenerative System Thinking:
Bridging the Gap Between Intent and Action 🌱

While technology is a powerful tool in our fight against the climate crisis, it alone can’t drive the change we need. We’ve done well in raising awareness about sustainability, but there’s a gap between understanding and action. It’s time to bridge that gap! To truly combat the climate crisis, we must intertwine the realms of technology, humanities, and social sciences. After all, the root of the crisis lies in human behavior. Only by altering our behaviors can we hope to find a solution. 🔗 By merging the insights from social and natural sciences, we can ensure that knowledge isn’t just acquired but acted upon. The current system often makes the effort seem greater than the reward, creating an intention-action gap. But through systemic design, we can offer a holistic understanding of societal and ecological needs. To Translate complex, real world challenges into solutions that creates positive social and  environmental impact, for all, we need regenerative system thinking.

Regenerative System Thinking. 6-step approach to Regenerative System Thinking:

1️⃣ Empathize & Observe:
1A: Empathize: Engage deeply with people to understand their perspectives and identify the barriers they face.
1B: Observe: Delve into the system’s intricacies to comprehend its functioning and dynamics.

2️⃣ Define & Explain:
2ADefine: Pinpoint the specific challenges and problems faced by individuals.
2B:Explain: Grasp and articulate how the system operates, shedding light on the root causes of the problems.

3️⃣ Ideate: Brainstorm innovative solutions that cater to both human needs and the planet’s well-being.

4️⃣ Design: Craft comprehensive strategies and solutions that serve both humanity and our environment.

5️⃣ Prototype: Develop tangible prototypes to test and refine ideas. Remember, action often brings clarity and deeper understanding.

6️⃣ Evaluate: Rigorously assess the impact of the solutions on both the system and its people, ensuring alignment with our regenerative goals.
Together, let’s turn understanding into impactful action. 🌟🌍 #RegenerativeThinking#ClimateActionNow

https://www.linkedin.com/posts/kasper-benjamin-reimer-bj%C3%B8rkskov-660a4899_regenerativethinking-climateactionnow-activity-7117382272009269248-2JEU?utm_source=share&utm_medium=member_desktop

Turning a social model into a hybrid model

  1. My primary feedback pertains to the model’s reliance on a 2P basis, whereas the literature suggests that a 3P basis might lead to more effective outcomes. The Triple P framework is often referred to as People, Planet, Profit, though the latter may be replaced by Progress to encompass a broader perspective on social innovation. Please refer to sources such as Dwivedi & Weerawardena (2018), McMullen & Warnick (2016), Weerawardena et al. (2021), and Saebi et al. (2019).
  2. Another change in perspective is that systems thinking should not be limited to the Planet aspect of innovation. To exclude consideration of people and progress from systems thinking, in my opinion, would not constitute true systems thinking. I believe that the combination of these two (or three) processes could be referred to as systems thinking. You can find further insights in sources like Spender et al. (2017), Shepherd et al. (2015), and Rossignoli et al. (2018).
  3. Lastly, the iteration of processes outlined in the initial model does not align with existing literature and practical execution of innovation. You can reference works such as Crossan & Apaydin (2010), Barney & Felin (2013), Miron-Spektor et al. (2018), Bryan et al. (2021), Gans et al. (2019), and Landry et al. (2002) for a more accurate representation of how innovation is typically executed.

Therefore, I’ve designed a new infographic that more closely resembles regenerative innovation processes using systems thinking. In the dynamic landscape of innovation, the pursuit of regenerative progress stands for merging sustainability, profit, and human-centric principles into viable offerings. In this innovative model, three distinct but interwoven processes unfold in parallel, converging at Step 3 to craft a regenerative future that harmonizes the planet, progress, and people. This model encapsulates the essence of responsible leadership, ambidextrous leadership, and creative leadership, each playing a pivotal role in shaping regenerative innovation.

  1. Responsible Leadership (Planet) requires innovators to study the root causes of environmental and societal challenges, recognizing that regeneration begins with a deep understanding of the issues at hand. At Step 3A, leaders collaboratively formulate design principles that embrace ecological and ethical considerations, creating a blueprint for responsible strategy. This strategy, implemented with meticulous care, ensures that regenerative innovation is continually measured and monitored for its impact on the planet.
  2. Ambidextrous Leadership (Progress/Profit) unfurls a visionary path through diligent market research, seeking opportunities where profit can be harmonized with regenerative principles. At Step 3B, innovators craft bold ideas that resonate with the sustainable future they aspire to create. Within this collaboration, a multilayered business model emerges, serving as a robust platform for regenerative innovation. The model provides the necessary scaffolding to launch regenerative solutions into the market successfully.
  3. Creative Leadership (People) places the human element at the heart of regenerative innovation. By knowing their customers intimately, innovators ensure that solutions are not only ecologically sound but also responsive to the needs, desires, and values of the people they serve. At Step 3C, creative leaders join forces with their counterparts in Ambidextrous Leadership, forging smart solutions that prioritize the well-being of both the planet and humanity. They craft prototypes that are not only effective but also user-friendly, culminating in an evaluation process that centers on the customer experience.

This three-pronged approach to regenerative innovation redefines the boundaries of progress, profit, and sustainability. The magic lies in the convergence of these three leadership paradigms at Step 3, where ideas, strategies, and solutions synergize to create a regenerative force greater than the sum of its parts. Together, they pave the way for a future where responsible, ambidextrous, and creative leaders collaborate to shape a world that is not only profitable but also harmoniously interwoven with the planet and its people.

Avoid the Toxic Trap: the Toxic Matrix

Avoid the Toxic Trap: the Toxic Matrix

Innovation is the foundation of progress and success in business. A culture of innovation is essential for companies to thrive and stay competitive. One of the biggest challenges for companies is to ensure that the culture of innovation is not overshadowed by a culture of toxicity. There are a number of potential pitfalls that must be avoided in order to create an environment that encourages creativity and collaboration. This blog will discuss these issues, as well as strategies for avoiding the Toxic Trap.

Read more
2 Decades of Open Innovation: an infographic

2 Decades of Open Innovation: an infographic

The rise of open innovation has been a long-standing trend in business. In the early 1990s, companies were starting to realize that they could improve their competitive edge by sharing their ideas and innovations with others. This led to the development of the concept of “open source” software, which allows for free exchange of information among developers. Open innovation is a term first coined by professor Henry Chesbrough in his 2003 book “Open Innovation: The New Imperative for Creating and Profiting from Technology”. It describes the process of organizations leveraging external ideas and resources to drive innovation and growth. This can be done through things like open R&D, corporate venturing, collaborative research, etc.

Read more
Infographic: Innovation Learning Arches

Infographic: Innovation Learning Arches

What if we look at innovation from the perspective of learning? In that case, the sole intention of innovation management is not systematically generating and implementing viable offerings, but optimizing the amount of learning that an organization can handle when dealing with processes of creativity. For the purpose of this infographic I’ve combined the theories on a) stage-gate processes in innovation and technology development, b) organization learning and absorptive capacity and c) learning arches as they are widely used on higher education.

Read more
Inneagram: Stakeholder Collaboration in Innovation Ecosystems

Inneagram: Stakeholder Collaboration in Innovation Ecosystems

The story of this infographic began 16 years ago during a Summer School organized by the University of Cambridge. Not in the City of Perspiring Dreams itself, but on the mystical mountain Uludağ in Turkey, with 15 fellow students in a mountain hut more than 1 hour away from the nearest town with cellphone reception. On this mountain, led by Cambridge professor Jim Platts, we took an ESTIEM traineeship in transformative leadership. Without taking a deep dive into the material of the Summer School, one of the models that we started to work with was the Enneagram. Not only the power of the model itself, but also the history behind it, really intrigued me and so the story began.

Over the years, I’ve read much more about the Enneagram. Mostly used in (business) psychology, the framework is best described as an adaptive approach to recognize your own – and others’- behaviour in interactions with others. So it’s not, as many think, a framework for personality traits, like the Myers-Briggs Type Indicator (MBTI) or the Big-5 personality test. It perhaps holds the middle between these personality tests and the Rose of Leary, a theory of behavioral influence. The theory helps you to find your comfort-spot and from there on explains how your interactions with others happen and could be improved if you learn how to read it. It’s adaptable: it may change under different circumstances, under different preconditions and in different situations.

Read more
Innovation for SDGs

Innovation for SDGs

After its introduction by the United Nations in 2015, the Sustainable Development Goals (SDGs) have started to become increasingly accepted and embraced by both the public sector and the private sector as the ‘horizon’ to focus on when it comes to this world’s grandest challenges. Over the years, public institutes have operationalized and committed themselves to the 17 SDGs – and its 169 measurable targets. In their ambition to be sustainable, large corporates have embedded the SDGs in their annual reporting cycles and have started to (incrementally) change their behaviour for the good.

It is widely accepted that innovation and entrepreneurship are in high need to address these challenges. Innovation and emerging technologies, such as artificial intelligence, will guide the way to a better world. It is therefore that SDGs have become a prior field of interest in science, both in social sciences as in more innovation-related sciences. We believe that developments in science – not in the last place sponsored by large corporates or subsidized by public institutes – will lead to future developments in the private sector. In that way – science will guide us towards are more sustainable world.

Read more
A Visual History of Innovation Theory

A Visual History of Innovation Theory

The history of innovation theory is as rich as innovation itself. Greek philosophers like Plato and Aristotle already used the term καινοτομία coming from καινός (new) and τομ (radical craftsmanship): crafting in a radically new way. In modern theory, it was Schumpeter who popularized the term innovation in 1934 as part of his line of thinking about business cycles and creative destruction as the basis for (capitalistic) market economies. While he may have based his theory largely on 19th century and early 20th century economists, such as Tarde, Weber and Marx, his work was unique in the way that it combined all of these theories and that he described the important role of the ‘entrepreneur’ in innovation. Different scholars have later addressed the invention of the term ‘entrepreneur’ to Schumpeter.

Read more
Crisis-Triggered Innovation Systems

Crisis-triggered Innovation Systems

While the Corona crisis is currently affecting millions worldwide, I wanted to already share with you a fragment of a book I’m currently writing about innovation in the new economy. The fragment is about how a crisis or disruption can create a (spontaneous) need for innovation and could open up opportunities for innovative companies to address new and changed market needs.

Read more
Business Model Innovation Canvas

How to blend 10 Types of Innovation with the Business Model Canvas?

Simple but effective: I’ve tried to combine the excellent framework of 10 Types of Innovation (Keeley et al, 2013) with the highly successful framework of the Business Model Canvas (Osterwalder, Pigneur et al, 2008). I wasn’t the first one to come up with this idea, some others have plotted the 10 types on the BMC before, such as Huw Griffiths on Medium or Heather McQuaid on Slideshare.

Read more